
GoLayout for .NET
 Automatic Layout Library

for GoDiagram for .NET

User Guide

This guide provides information on using the classes provided in the GoLayoutTM for
Microsoft® .NET for GoDiagramTM for Microsoft® .NET.

September 2016

Northwoods Software Corporation
142 Main St.

Nashua, NH 03060

http://www.nwoods.com

http://www.nwoods.com/

 ii

Copyright © 1999-2018 Northwoods Software Corporation

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, electronic, mechanical,
photocopying, recording, or otherwise without the prior written permission of the
publisher.

Northwoods Software Corporation makes no representations that the use of its
products in the manner described in this publication will not infringe on existing or
future patent rights, nor do the descriptions contained in this publication imply the
granting of licenses to make, use, or sell equipment or software in accordance with the
description.

Possession, use, or copying of the software described in this publication is authorized
only pursuant to a valid written license from Northwoods or an authorized sublicensor.

Neither Northwoods Software Corporation nor its employees are responsible for any
errors that may appear in this publication. The information in this publication is subject
to change without notice.

The following are trademarks of Northwoods Software Corporation: Northwoods
Software, GoDiagram, GoLayout, GoInstruments, JGo, GO++, Sanscript, Flowgram, the
Northwoods logo, and Fully Visual Programming.

All other trademarks and servicemarks are property of their respective holders.

 iii

CONTENTS
Preface .. 1

1. Introduction ... 3

2. The Layout Demo Sample Application ... 9
Introduction to the “Layout Demo” Sample Application... 9
Layout Demo Menus ... 9
Layout Demo Quick Start .. 10

Force-Directed Auto-Layout .. 10
Layered-Digraph Auto-Layout ... 13
Tree Auto-Layout .. 16

3. Quickly Adding Layout to Your Go Application .. 23
References .. 23
Performing an Automatic Layout .. 23

4. GoLayout Concepts .. 27
Design Philosophy... 27
IGoLayoutNetwork, IGoLayoutNetworkNode, and IGoLayoutNetworkLink 27
GoLayout ... 28

GoLayoutForceDirected .. 29
GoLayoutLayeredDigraph ... 30
GoLayoutTree ... 34
Automatic Layout inside SubGraphs .. 45

5. Advanced Options .. 47
GoLayoutForceDirected .. 47
GoLayoutLayeredDigraph ... 51
Tree Layout ... 56
Threads ... 59

 1

PREFACE

Purpose of this guide:

This guide provides an overview of GoLayout for .NET, .NET class libraries
containing sets of components for automatically rearranging nodes in a
GoDiagram for .NET document:

• GoLayout for .NET Windows Forms, as the
Northwoods.Go.Layout.dll assembly

Understanding this guide requires familiarity with the .NET platform and with
Windows Forms.

The classes in the libraries are identical—in fact they are all named identically to
facilitate learning and porting code. The only difference is the namespace,
which is Northwoods.Go.Layout for GoLayout for .NET Windows Forms.

For more detailed information about the types, classes and interfaces, see the
appropriate GoDiagram for .NET Class Reference Manual. (online help)

Who should use this guide:

This guide is intended for application programmers using one of the GoLayout
for .NET libraries.

This manual assumes you are familiar with Microsoft .NET and GoDiagram for
.NET programming concepts and terminology. If you are not, please refer to
your Microsoft .NET and GoDiagram for .NET documentation or online help.

 2

Structure of this guide:

This guide is organized as follows:

• Introduction – summarizes the capabilities of the GoLayout software.

• The Layout Demo Sample Application – introduces the Layout Demo sample
application.

• GoLayout Concepts – describes the overall design of the GoLayout classes.

• Quickly Adding Layout to Your Go Application – describes the minimal
additions required to add GoLayout functionality to a Go application.

• Advanced Options – summarizes some of the most useful options available
in the GoLayout classes.

 3

1. INTRODUCTION

The GoLayout for .NET class library is a set of classes built to interface with the
GoDiagram for .NET class library and provide support for automatically laying
out graphs (node & arc diagrams) by positioning the nodes and routing the links.

Although the classes in the GoLayout class library are not subclasses of classes
in the Go class library, many aspects of the layout routines take advantage of
the fact that Go objects are targets of the layout.

GoLayout currently supports three general auto-layout routines: a force-
directed auto-layout routine, a layered-digraph auto-layout routine, and a tree
auto-layout routine. The force-directed auto-layout routine is intended for use
with all types of graph – undirected graphs as well as directed graphs. The
layered-digraph and tree auto-layout routines are intended specifically for use
with directed graphs, including trees and hierarchies.

 4

Figure 1 and Figure 2 illustrate a sample graph before and after applying force-
directed automatic layout.

Figure 1. Sample graph before layout

Figure 2. Sample graph after Force-Directed Auto-Layout

fig2.bmp

 5

Figure 3 and Figure 4 illustrate a sample graph before and after applying
layered-digraph automatic layout.

Figure 3. Sample graph before layout

 6

Figure 4. Sample graph after Layered-Digraph Auto-Layout

Figure 5 and Figure 6 illustrate a sample graph before and after applying tree
automatic layout.

Figure 5. Sample graph before layout

 7

Figure 6. Sample graph after Tree Auto-Layout

The GoLayout class library is designed to be flexible and extensible. All Layout
objects are easily subclassed for application-specific specialization. New Layout
objects can be easily added to the existing framework.

 9

2. THE LAYOUT DEMO SAMPLE APPLICATION

Introduction to the “Layout Demo” Sample Application

“Layout Demo” is the primary sample application for the GoLayout library.

The goal of Layout Demo is to demonstrate as many features of the GoLayout
library as possible, but to remain simple enough so that most of what you see in
Layout Demo are fundamental capabilities of GoLayout.

Note: Layout Demo is not suitable as a sample application for learning
about GoDiagram for .NET. Layout Demo takes advantage of Go primarily
as a framework for drawing graphs.

Layout Demo Menus

This section describes the interesting Layout Demo menu commands.

View Commands Description

Toggle Arrowheads Turns arrowheads on links on or off.

Insert Commands Description

Basic Node Opens a dialog box for creating a new node. The dialog
prompts for the number of ports, an optional node label,
and whether the ports should be oriented horizontally or
vertically.

Generate Random Tree Clears the document and adds a bunch of nodes
connected together by links to form a tree structure.

 10

Layout Commands Description

Random Layout Performs a randomizing auto-layout on the document.

Force Directed Layout Performs a force-directed auto-layout on the document.

Layered Digraph Layout Performs a layered-digraph auto-layout on the document.

Tree Layout Performs a tree auto-layout on the document.

Layout Demo Quick Start

This section provides a quick introduction to the Layout Demo application and
the auto-layout routines.

Force-Directed Auto-Layout

First, we examine the force-directed auto-layout routine. To begin, create a
number of one-port nodes using the Basic Node menu item or by double
clicking on the background. Move them around and link them together into a
cycle to create a graph similar to that in Figure 7. Notice that the nodes have an
initial color of red. LayoutDemo uses the color of a node to demonstrate some
of the customizable aspects of the Layout routines. Double-click anywhere
inside of a node to change its color.

Figure 7. Example 1

 11

Nodes can be linked together by clicking on a port and dragging towards
another port. A successfully created link will draw a directed arrow from one
node to the other.

After creating a graph, choose the Force-Directed Auto-Layout menu item,
or type Ctrl-F. This will bring up the modeless form illustrated in Figure 8.

Figure 8. Dialog box for Force-directed Auto-Layout

Examine the different options available for the force-directed auto-layout, but
leave the default values and click Apply (or type Enter). The graph will animate
as it moves towards its final position, similar to that shown in Figure 9.

 12

Figure 9. Result of applying Force-Directed Auto-Layout to
Example 1

The force-directed auto-layout routine works by viewing a graph as a system of
bodies with forces acting between the bodies. The routine tries to move each
node into a position such that the sum of the forces acting on the node is zero.
In particular, nodes are replaced by electrically charged particles that repel each
other and links are replaced by springs that connect the particles.

The different options available for the force-directed auto-layout allow you to
adjust the characteristics of the particles and springs that determine the layout
of the graph.

See what happens when you change some of the default values. Choose the
Force-Directed Auto-Layout menu item, but change the value of
electricalCharge under Red Options to 300 and click Apply. Notice that
with a higher electrical charge, the nodes repel each other more, and the result
is a graph with greater distances between adjacent nodes.

On the other hand, if you change the value of springStiffness under Red-

Red Options to 0.2 and click Apply, then the stronger springs will result in a
graph with smaller distances between adjacent node.

As a final example, move one node some distance away from the rest of the
nodes. Double-click on the node to change its color to green. Choose the
Force-Directed Auto-Layout menu item, select fixed under the Green

Options, and change the value of springLength under Red-Green Options
to 200 and click Apply. Now, the green node will remain fixed and the other
nodes move towards it. Further, the longer springLength between the red

 13

and green nodes will result in a greater distance between the red and green
nodes than between the red nodes, as illustrated in Figure 10.

Figure 10. Result of changing parameters

Try adjusting the values of the other parameters to see their effect on the
layout.

Setting a gravitationalFieldX and gravitationalFieldY induces a field over
the entire document. The gravitational field only affects nodes with a
gravitationalMass. Try values of -1 for gravitationalFieldX and 1 for
gravitationalMass.

Layered-Digraph Auto-Layout

Next, we examine the layered-digraph auto-layout routine. Create a new
document, create a number of one-port nodes using the Basic Node menu
item or by double clicking on the background, move them around, and link them
together into a tree similar to that shown in Figure 11.

 14

Figure 11. Sample Directed Graph

Now, choose the Layered-Digraph Auto-Layout menu item, or type Ctrl-L.
This will bring up the modeless form shown in Figure 12.

Figure 12. Layered Digraph Auto-Layout Options dialog box

 15

Examine the different options available for the layered-digraph auto-layout, but
leave the default values and click Apply (or type Enter). The graph will be
redrawn in its final position in a manner similar to that shown in Figure 13. The
exact arrangement may depend on the order in which you drew the links.

Figure 13. Resulting layout after Layered-Digraph Auto-Layout

The layered-digraph auto-layout routines works as follows: the nodes in the
graph are placed into layers such that all of a node’s predecessors are in a
higher layer and all of a node’s successors are in a lower layer; the routine then
heuristically permutes the orders of each node within a layer such that the total
number of link-crossings is reduced.

Finally, the routine adjusts the positions of each node within a layer to reduce
the number of bends required by the links. In order to layout arbitrary directed
graphs, the layered-digraph routine removes cycles from graphs by temporarily
reversing some links.

In addition, the nodes can be assigned to layers using one of three layering
techniques. The iterations value under Crossing Reduction Options
determines how long the routine looks for ways to reduce the link crossings;
however, values higher than 8 rarely have a profound affect on the final
drawing. The aggressive option under Crossing Reduction Option chooses
whether or not to augment the standard crossing reduction step with additional
aggressive, but time consuming, passes. Finally, the layerSpacing and
columnSpacing values determine how much space is reserved between
adjacent layers and columns. The direction option determines the orientation
of the directed links.

 16

Figure 14 illustrates a more complicated graph which has been drawn using the
layered-digraph auto-layout routine.

Figure 14. Result of applying Layered-Digraph Auto-Layout to
more complex graph

This graph shows the consideration that the layered-digraph auto-layout
routines give to nodes with multiple ports. The relative positions of ports within
a node are used both in reducing the number of link crossing and in
straightening the links.

Tree Auto-Layout

Finally we take a quick look at the tree auto-layout.

You can construct your own tree of nodes manually, or you can invoke the
Generate Random Tree command on the Insert menu.

Then invoking the Tree Layout command on the Layout menu, or typing Ctrl-T,
will bring up the following modeless form:

 17

You can change any of the settings and click on Apply to perform the layout, or
just type Ctrl-T again in the canvas window.

The Spacing settings control how close the nodes are to each other, between
sibling nodes, and between parents and their children. The Compaction option
controls whether subtrees are fit closer together to allow overlap in depth
without overlapping any individual nodes. For example, with Block compaction:

 18

But with no compaction:

You can also control how the parent node is positioned relative to its children.
If you specify an Alignment of Start, and Compaction is back to the default
value of Block, you get the following effect:

 19

You can have broad trees take up less breadth by limiting the breadth. Subtrees
and nodes can be laid out in multiple rows. For example, the same tree laid out
with a Maximum Breadth of 1500:

You can also reduce the breadth by using the Tree Style that uses a very narrow
breadth limit for those parent nodes that only have children but no
grandchildren, called LastParents. When the tree style is LastParents, you can
specify different tree layout settings for those “last parent generation” nodes. If

 20

you specify a Breadth Limit of just 1, it will force all of those children to be laid
out in a single column:

Note how the children of a node, if there isn’t enough breadth allowed to place
them all in a single row, will lay them out in multiple rows. In the above case,
where the Breadth Limit is 1, all of the children are forced to be in new rows,
causing them all to form a single column of children.

Finally, this Tree Layout form allows you to control how separate trees are laid
out relative to each other in the document. The Forest Arrangement settings
control how separate trees are positioned next to each other, where the first
one is positioned (the Origin) and how much space there should be between
separate trees. For example, after modifying the graph by deleting the three
nodes at the root, and then specifying a Horizontal Arrangement:

 21

 23

3. QUICKLY ADDING LAYOUT TO YOUR GO APPLICATION

Integrating GoLayout into an existing Go application is very easy. This section will
take you through the steps of adding GoLayout to a generic Go application.

References

Make sure your project refers to the Go and GoLayout assemblies. These are
located in the lib subdirectory of the GoDiagram installation. The assemblies are
named:

Northwoods.Go.dll

Northwoods.Go.Layout.dll

Make sure your source code uses the Go and GoLayout namespaces:

VB.NET for Windows Forms:

Imports Northwoods.Go

Imports Northwoods.Go.Layout

C# for Windows Forms:

using Northwoods.Go;

using Northwoods.Go.Layout;

The Imports/using statement lets the .NET compiler know about the base Go
classes and the GoLayout library.

Performing an Automatic Layout

In this example, we will invoke the auto-layout routines from simple functions. We
are not concerned about when these methods are called. They may be
automatically called when a document is opened, or when the document changed.
Or, as is the case in LayoutDemo, they may be run at the user’s command.

You can dynamically create an instance of a layout object, assign its properties, and
then call PerformLayout. For example:

VB.NET:

 Public Sub LayerAction()

 Dim layout As GoLayoutLayeredDigraph = New GoLayoutLayeredDigraph()

 24

 layout.Document = goView1.Document

 ' maybe set other properties too . . .

 layout.PerformLayout()

 End Sub

C#:

 void LayerAction() {

 GoLayoutLayeredDigraph layout = new GoLayoutLayeredDigraph());

 layout.Document = this.goView1.Document;

 // maybe set other properties too . . .

 layout.PerformLayout();

 }

Or a command to perform force-directed automatic layouts:

VB.NET:

 Public Sub ForceAction()

 Dim layout As GoLayoutForceDirected = New GoLayoutForceDirected()

 layout.Document = goView1.Document

 ' maybe set other properties too . . .

 layout.PerformLayout()

 End Sub

C#:

 void ForceAction() {

 GoLayoutForceDirected layout = new GoLayoutForceDirected();

 layout.Document = this.goView1.Document;

 // maybe set other properties too . . .

 layout.PerformLayout();

 }

Finally, for tree layouts:

VB.NET:

 Public Sub TreeAction()

 Dim layout As GoLayoutTree = New GoLayoutTree()

 layout.Document = goView1.Document

 ' maybe set other properties too . . .

 layout.PerformLayout()

 End Sub

C#:

 void TreeAction() {

 GoLayoutTree layout = new GoLayoutTree();

 layout.Document = this.goView1.Document;

 // maybe set other properties too . . .

 layout.PerformLayout();

 }

That’s it!

 25

The constructors for GoLayoutLayeredDigraph and GoLayoutForceDirected and
GoLayoutTree used above initialize the auto-layout options to default values. Then,
once the Document property has been set, PerformLayout() can automatically
create a GoLayoutNetwork from it. Clearly, these values will not be suitable for all
applications. See the Advanced Options section of this guide for details regarding
customizing the auto-layout routines. Further customization is available by
subclassing the GoLayout classes. See the Advanced Options section of this guide
and the Reference Manual Help file for details about the appropriate properties and
methods.

One common variation is to just perform an automatic layout on the nodes in one
layer of the document. For example:

VB.NET:

 GoLayer aLayer = ...

 Dim layout As GoLayoutLayeredDigraph = new GoLayoutLayeredDigraph()

 layout.Document = myView.Document

 layout.Network = layout.CreateNetwork()

 layout.Network.AddNodesAndLinksFromCollection(aLayer, false)

 layout.PerformLayout()

C#:

 GoLayer aLayer = ...;

 GoLayoutLayeredDigraph layout = new GoLayoutLayeredDigraph();

 layout.Document = myView.Document;

 layout.Network = layout.CreateNetwork();

 layout.Network.AddNodesAndLinksFromCollection(aLayer, false);

 // maybe set other properties too . . .

 layout.PerformLayout();

The second argument to AddNodesAndLinksFromCollection controls whether to
layout only objects implementing IGoNode (if true) or all objects (if false).

If you just want to do an automatic layout on the objects that the user has selected,
in the code above replace “aLayer” with “aView.Selection”. However note
that this assumes that the user will select all the relevant links in addition to the
nodes. If not all of the links are selected, only a partial GoLayoutNetwork is
created, thereby giving the layout routine a different view of the graph than you
might have expected.

 27

4. GOLAYOUT CONCEPTS

Design Philosophy

GoLayout has been designed to be easy to use, general enough to meet the
requirements of a large array of Go applications, and extensible enough to allow
application-specific requirements to be incorporated with minimal effort.

This design philosophy has led to a set of auto-layout classes that export a
simple, public interface, but make use of a number of protected functions to
provide hooks for specialization.

The default implementations of these functions should be adequate for most
applications, but subclassing the GoLayout classes can lead to better layouts.

IGoLayoutNetwork, IGoLayoutNetworkNode, and
IGoLayoutNetworkLink

The IGoLayoutNetwork interface provides a view of an abstract network (graph)
of nodes and directed links. These nodes and links, implementing the
IGoLayoutNetworkNode and IGoLayoutNetworkLink interfaces, generally
correspond to top-level GoObjects in a GoDocument. An instance of
IGoLayoutNetwork is a collection containing instances of
IGoLayoutNetworkNodes and IGoLayoutNetworkLinks.

For each of the kinds of GoLayout, there is a set of layout-specific classes that
implement IGoLayoutNetwork, IGoLayoutNetworkNode, and
IGoLayoutNetworkLink. For example, GoLayoutTree makes use of a
GoLayoutTreeNetwork that contains GoLayoutTreeNodes and
GoLayoutTreeLinks.

The purpose of IGoLayoutNetwork is to provide a framework for manipulating
the state of nodes and links without affecting the document GoObjects.

By default, a network is created from a GoDocument by adding all top-level
GoObjects that are not ports or links as nodes to the network. Alternatively,
any other IGoCollection object can be used instead such that only those
GoObjects that are in the collection are added as nodes to the network.

 28

All top-level IGoLinks as are added, by default, as links to the network. If an
IGoCollection is provided, then only those IGoLinks that are in that collection
are added as links to the network. Note that links which are in the collection,
but whose corresponding to-nodes and from-nodes are not in the collection,
will not be added to the network.

The majority of applications will simply let the auto-layout class construct the
network from a document. They need to construct an auto-layout class and
then add nodes and links from the current GoDocument or another
IGoCollection. However, more sophisticated results can be achieved by
combining modifications to the IGoLayoutNetwork with auto-layout subclasses
written to recognize the modifications. For example, you can programmatically
modify the network to remove some network nodes and/or network links. This
would cause a subset of the GoObjects in the document to be moved.

As another example, network nodes and network links that have no relationship
to any GoObjects on the screen can be introduced into the network to influence
the final layout. The IGoLayoutNetworkNode and IGoLayoutNetworkLink
interfaces provide a property, named UserObject, for Objects used to hold user
information which can be used to mark or otherwise distinguish particular
nodes and links in the network.

Those interested in writing subclasses of the auto-layout classes should
familiarize themselves with the specific network node and network link classes,
particularly the GoObject property. This property returns the top-level
GoObject (in the GoDocument) which is represented by the
IGoLayoutNetworkNode or IGoLayoutNetworkLink.

The majority of functions in the auto-layout classes that can be overridden to
provide specialized layout routines take network node or network link
parameters.

The GoObject property will be useful for tailoring the function result to
application specific details. However, be aware that some auto-layout classes
introduce “artificial” nodes or links, which do not correspond to any top-level
GoObject. For these nodes and links, GoObject returns null.

GoLayout

All of the auto-layout routines are contained in subclasses of the abstract
GoLayout class. Although the GoLayout class performs no layout, it defines the
public interface inherited by all auto-layout classes. In particular, all auto-layout
classes will inherit the following members:

 public abstract void PerformLayout();

 public virtual void RaiseProgress(float progress, String msg) {}

 public event GoLayoutProgressEventHandler Progress;

 29

The PerformLayout method is called to perform the actual layout. Since
PerformLayout is an abstract method in the GoLayout class, the GoLayout class
is an abstract class; hence, no GoLayout object can be created.

The RaiseProgress method is called by subclasses of GoLayout at various times
with a parameter between 0.0f and 1.0f, to indicate the progress through the
layout routine. By default, RaiseProgress just calls OnProgress to call all
Progress event handlers.

In addition, GoLayout defines a constructor and a set of properties to get and
set layout’s network and document. The constructor creates an instance with a
null network and a null document. Until the document is set to a non-null value
by setting the Document property, PerformLayout() will return without doing
anything.

GoLayoutForceDirected

The GoLayoutForceDirected class provides an auto-layout algorithm for graphs,
which utilizes a force-directed method. The graph is viewed as a system of
bodies with forces acting between the bodies. The algorithm seeks a
configuration of the bodies with locally minimal energy, i.e., a position such that
the sum of the forces on each body is zero.

The GoLayoutForceDirected class currently makes use of three sets of forces:
electrical forces, gravitational forces, and spring forces. Obviously no physical
forces are actually used in the layout routine, and the physical model is not
100% accurate. For example, forces always act along lines connecting the
centers of nodes, but the distances between nodes are calculated with the size
of the node taken into consideration. Hence, there may be some curious results
when using the routine on networks with oddly shaped nodes. However, the
physical analogy makes the layout routine easier to understand.

Each node in the input network is assigned an electrical charge. Each node
repels each other node with a force proportional to the product of their electric
charges and inversely proportional to the square of their distance. In addition,
each point in the document can be assigned a “horizontal electrical field” and a
“vertical electrical field.” A node is acted upon by a force that is proportional to
the product of the node’s charge and the field at the node’s location.

Each node in the input network is also assigned a gravitational mass. Although
gravitational forces are not exerted between nodes, each point in the document
can be assigned a “horizontal gravitational field” and a “vertical gravitational
field.” A node is acted upon by a force that is proportional to the product of the
node’s mass and the field at the node’s location.

 30

Finally, each link in the input network is assigned a spring length and spring
stiffness. Each link between a pair of nodes exerts a force on the nodes
proportional to the product of the spring stiffness and the difference between
the spring length and the distance between the nodes.

Additionally, a node can be “fixed,” which means that the node will not be
moved by the layout routine, but it will exert forces on other nodes in the
network.

The force-directed layout is an iterative process. At each iteration, the
placement of the nodes in the document results in forces acting upon each
node. Each node is moved a distance proportional to the magnitude of the
forces acting upon it. This process is repeated until the forces on each node are
reduced to zero, in which case a local equilibrium has been found, or until a
maximum number of iterations have been reached.

Note that in some cases the forces will never be reduced to zero, regardless of
the number of iterations. For example, consider two unconnected nodes each
with an electrical charge. Such nodes will continue moving away from each
other forever. For this reason it is frequently desirable to fix one or more nodes
prior to performing a force directed layout.

GoLayoutLayeredDigraph

The GoLayoutLayeredDigraph class provides an auto-layout algorithm for
directed graphs. The method uses a hierarchical approach for creating drawings
of directed graphs with vertices arranged in layers. The layout algorithm
consists of four-major steps: Cycle Removal, Layer Assignment, Crossing
Reduction, and Straightening and Packing.

In the Cycle Removal step, all directed cycles are removed from the input
network by temporarily reversing some number of links. Two cycle removal
routines are provided: Greedy Cycle Removal and Depth First Search Cycle
Removal. With Greedy Cycle Removal, the idea is to induce an order on all
nodes in the network (U1, U2, U3, ..., Uk) such that for the majority of links L = (Ui,
Uj) it is true that i < j. All links L = (Ui, Uj) such that i > j are reversed. With Depth
First Search Cycle Removal, a depth first search is performed on the input
network. A link L = (U, V) not in the depth first forest is reversed if U was
discovered and finished by the depth first search after V was discovered but
before it was finished. The Greedy Cycle Removal routine tends to reverse a
smaller number of links, but the Depth First Search Cycle Removal tends to
preserve a “natural” order to the nodes in the network.

In the Layering step, all nodes in the input network are assigned to layers. If
there is a link L = (U, V), then Layer(U) > Layer(V). Three layering routines are
provided: Longest Path Sink Layering, Longest Path Source Layering, and

 31

Optimal Link Length Layering. Figure 15 and Figure 16 illustrate the results of
each of these.

With Longest Path Sink Layering, every sink node (a node with no links leaving
the node) appears in layer 0 and every node is placed as close as possible to a
sink.

With Longest Path Source Layering, every source node (a node with no links
entering the node) appears in the maximum layer and every node is placed as
close as possible to a source.

With Optimal Link Length Layering, nodes are placed in layers to minimize the
total weighted link length, where the length of a link L = (U, V) is given by
Layer(U) – Layer(V). For more information about Optimal Link Length Layering,
please refer to the Advanced Options section of this guide GoWin.chm or
GoWeb.chm

Figure 15. Longest Path Sink Layering

 32

Figure 16. Longest Path Source Layering

Figure 17. Optimal Link Length Layering

Following the Layering step, there are two minor steps that prepare the
network for later steps. The Make Proper step converts the input network into
a proper digraph; i.e., artificial nodes and links are introduced into the network
such that every link is between nodes in adjacent layers. This has the effect of
breaking up long links into a sequence of artificial nodes, and making sure no
link will cross through any node.

 33

The Initialize Indices step assigns every node (both real and artificial) in the
input network an index number, such that nodes in the same layer will be
labeled with consecutive indices in left to right order. Three initialization
routines are provided: Naïve Initialization, Depth First Out Initialization, and
Depth First In Initialization. With Naïve Initialization, nodes are assigned indices
as they are encountered in a sweep of the network. Because of the way
networks are stored, this has the effect of initially placing all “artificial” nodes to
the right of all “real” nodes. With Depth First Out and Depth First Search In,
nodes are assigned indices as they are encountered in a depth first search of the
network, either from sources outward or from sinks inward.

The Crossing Reduction step reorders nodes within layers to reduce the total
number of link crossings in the network. The basic technique is to sweep back
and forth over the layers, using heuristics to reduce the number of link crossings
between adjacent layers. The first heuristic sorts the nodes in a layer by their
median and barycenter (weighted mean) values, which are calculated by the
nodes’ neighbors in the adjacent layers. The second heuristic uses a bubble-sort
technique on a layer to exchange adjacent nodes whenever doing so reduces
the number of link crossings between the layer and its adjacent layers. In
addition to the basic sweeping technique, there is an optional aggressive
crossing reduction step.

The basic sweeping technique sweeps across all layers of the network,
potentially discarding some improvement between one pair of layers because of
crossings introduced elsewhere in the graph. Better results can sometimes be
obtained by the aggressive technique, which spends more time examining
subsets of the layers for local improvements, independent of the rest of the
graph. Nodes with multiple ports are recognized by the crossing reduction
heuristics and crossings between links that connect to the same node are
correctly calculated.

The Straightening and Packing step positions the nodes within each layer to
reduce the total number of link bends in the network and to reduce the total
width of the network. The basic technique is to sweep back and forth over the
layers, using heuristics to reduce the number of link bends between layers. The
heuristics are designed to give higher priority to straightening links that have
multiple bend points. In addition, the locations of ports within a node are used
to better align links with their connecting points. Between sweeps, the network
is “packed” to reduce the total width.

The final step is to Layout Nodes and Links. This step simply translates the
position of a node in a layer into a screen position. It also inserts bend points
into links that extend across multiple layers. The node and layer spacing
parameters and the direction parameter determine the exact layout.

 34

GoLayoutTree

The layered-digraph autolayout algorithm is intended to handle any directed
graph. However, it is very common to want to lay out subsets of directed
graphs that form trees. Furthermore, with a tree layout, there are additional
features that are sensible to define, such as the ordering of child nodes and the
alignment of the parent node relative to its children. For generality we assume
there can be many trees in the network – i.e. it forms a “forest”.

GoLayoutTree.PerformLayout performs several steps:

1. Walk the GoLayoutTreeNetwork to build the tree structure(s).

2. Assign various GoLayoutTreeNode properties to guide the layout
process.

3. Sort the children of each parent node.

4. Associate any annotation objects with each GoLayoutTreeNode, such as
GoBalloon comments.

5. Layout each tree.

6. Position each tree in the document.

“Depth” measurements are along the same direction as the angle at which the
tree is growing. “Breadth” measurements are along the perpendicular
direction. Thus when the tree is growing horizontally (e.g. GoLayoutTree.Angle
is zero) the breadth of a node or of a subtree is its height. When the tree is
growing vertically (e.g. GoLayoutTree.Angle is 90) breadth corresponds to
width.

Constructing trees

As with every GoLayout, you can restrict the layout to operate on a subset of a
GoDocument by providing an IGoLayoutNetwork that specifies all the nodes
and links to consider. But rather than requiring this network to form a strict
tree, we allow it to be an arbitrary graph. The GoLayoutTree.Roots property
lets you specify the GoObjects that are to be the roots of the trees. The
GoLayoutTree.Path property controls the direction in which the layout follows
links to go from parent nodes to child nodes. If you don’t specify any Roots
explicitly, GoLayoutTree will try to find reasonable roots from which to start.
Afterwards, the GoLayoutTreeNode.Parent and Children properties will define
the actual trees.

Assign node properties

Each GoLayoutTreeNode has a number of properties that direct how the tree
layout will position the node relative to its parent, its siblings, and its children.

 35

Initially each GoLayoutTreeNode will get its properties from the defaults
provided by GoLayoutTree. But you can override
GoLayoutTree.AssignTreeNodeValues to specify particular values for particular
GoLayoutTreeNodes.

Sort children

The Children of each GoLayoutTreeNode need to be ordered before the layout
actually happens. The ordering can be natural, or it can sort the children using
an IComparer.

Associate balloon comments

The standard behavior is to search for any GoBalloon comments that refer to
the GoObjects that are represented by GoLayoutTreeNodes. These comments
increase the size of the GoLayoutTreeNode. When the nodes and links are
actually laid out in the document, the comments associated with those nodes
are also laid out near their nodes.

Layout trees

GoLayoutTree.LayoutTree does the tree-layout of GoLayoutTreeNodes,
respecting various properties such as GoLayoutTreeNode.Angle, Alignment,
Compaction, NodeIndent, NodeSpacing, LayerSpacing, and BreadthLimit. This
does relative positioning of all of the GoLayoutTreeNodes.

Arrange trees

Finally all of the GoLayoutTreeNodes know where they are positioned relative
to other GoLayoutTreeNodes, but their corresponding GoObjects need to be
positioned for real. Furthermore, separate trees in the forest may need to be
positioned so they do not overlap each other. The GoLayoutTree.Arrangement
property controls how separate trees are positioned, using the
ArrangementOrigin and ArrangementSpacing properties for guidance.

Comments are also positioned relative to their associated nodes; the
GoLayoutTree.CommentSpacing and CommentMargin properties help guide
that work.

GoLayoutTree and GoLayoutTreeNode Properties

Here is a simple tree, with an Angle of 90, so that as the tree grows deeper it
gains height. “Depth” corresponds to height; “breadth” corresponds to width.
Each node is color-coded by its level (or layer) in the tree. The links have a Style
that is GoStrokeStyle.Bezier. We have marked the effect of the LayerSpacing
and NodeSpacing properties.

 36

(By the way, these examples were constructed using GoBasicNodes, with their
LabelSpot set to GoObject.Middle, their AutoResizes set to false, and their
Shape.Size set to 100 x 35.)

Now for the same tree, but with an Angle of zero. Now “depth” corresponds to
width and “breadth” corresponds to height. The LayerSpacing and
NodeSpacing properties have same meaning, but with a different orientation.
This tree also sets the value of NodeIndent, which reserves some initial space at
the start or end of each row of children. Furthermore the Alignment property
has been set to GoLayoutTreeAlignment.Start. (The NodeIndent property is
really only meaningful when the Alignment is Start or End, not when the
alignment is a centering one.)

 37

Next is the same tree again, but with the BreadthLimit set. This property tries to
limit the breadth of a subtree to the given value. (The default value of zero
means “no limit” -- all of the children are laid out in a single row, no matter how
broad that subtree gets.)

When there is a limit on the breadth, and there isn’t enough room to position all
of the subtrees (descendent nodes), the auto-layout will position children in
additional rows. In this next example, notice that nodes #10 and #11 have been
placed in a second row of pink nodes. Furthermore, note that node #1 has two
rows of children (for nodes #2 and #3). But there is enough room for the children
of node #3 to just place them in a single row.

When specifying a BreadthLimit, the Alignment should be Start or End. The
RowIndent property reserves room for the links that are routed around earlier
rows to get to following rows. (The default value for RowIndent of 10 is fine for
most applications.) The RowSpacing property specifies the distance between
rows. After the last row, additional LayerSpacing room is reserved, to increase
the visual distinction between a group of rows for one parent and a different
layer.

 38

When the Alignment is GoLayoutTreeAlignment.End, one gets the same
positioning, but in the opposite direction. Note also that these links have simple
straight segments, whereas the previous screen shot has Orthogonal links.

Finally, when you have GoBalloon comments associated with nodes, you can
control the spacing by setting the CommentMargin and CommentSpacing
properties.

Comparison of Alignments

Here are examples of the same graph using different values of
GoLayoutTreeAlignment.

 39

 40

 Note that GoLayoutTreeAlignment .BusBranching only works well with
GoLayoutTreeStyle.Layered.

GoLayoutTree Styles

The normal GoLayoutTree.Style is GoLayoutTreeStyle.Layered. This style has
each node lay out its children in the manner specified by the properties set on
GoLayoutTree, as described in the previous section. However, you can make
simple customizations of the tree layout by specifying other Styles.

GoLayoutTreeStyle.LastParents is a commonly used style to have the fringes of
the tree be laid out differently from the whole tree. A “Last Parent” is a node
that is a parent (i.e. there is at least one child) but that does not have any grand-
children.

 41

Here is a tree laid out with the properties:

layout.Angle = 90

The same tree, but with

layout.Style = GoLayoutTreeStyle.LastParents

layout.AlternateDefaults.Angle = 90

layout.AlternateDefaults.BreadthLimit = 100

Note how the leaf nodes, when there were no siblings with children, are
arranged to take much less breadth. The alternate BreadthLimit was a bit larger
than twice the breadth of the nodes plus the NodeSpacing, causing the nodes to
be arrayed in two columns.

GoLayoutTree actually has two sets of default node properties, one held by
RootDefaults and one held by AlternateDefaults. All of the GoLayoutTree
properties relating to nodes just delegate to the corresponding property on
RootDefaults.

 42

When the Style is LastParents, the AlternateDefaults properties are used to
initialize all of the “last parent” nodes’ properties. All the other nodes inherit
their properties from their parent node, just as with the normal style. Except
root nodes, of course, inherit their properties from the
GoLayoutTree.RootDefaults.

When the Style is Alternating, every node inherits from their grand-parent node.
However, root nodes get their properties from GoLayoutTree.RootDefaults, as
always, and the immediate children of root nodes get their properties from
GoLayoutTree.AlternateDefaults.

When you set a property relating to nodes on GoLayoutTree, you may need to
remember to also set that property on the GoLayoutTree.AlternateDefaults, as
the example above did for the Angle property.

Here’s another tree, also with an Angle of 90:

Now we’ll change the Angle and Alignment of the last parents:

layout.Style = GoLayoutTreeStyle.LastParents

layout.AlternateDefaults.Angle = 0

layout.AlternateDefaults.Alignment = GoLayoutTreeAlignment.Start;

Note below how node #0, with an Angle of 90, is growing downwards, but each
of the LastParent nodes (#1 and #5) are growing towards the right, because the
alternate angle is zero.

 43

To shift those nodes #2,3,4 and #6,7,8 down, we can specify a NodeIndent for
those last parent nodes (#1 and #5). Remember that the NodeIndent controls
how much initial space there is in a row. Since nodes #1 and #5 are growing
towards the right, the row actually extends vertically.

layout.AlternateDefaults.NodeIndent = 55

For nodes #1 and #5, the Angle is now 0, meaning towards the right, so if we
want to reduce the horizontal space between #1 and #2,3,4, we need to reduce
the LayerSpacing for those “last parent” nodes. To avoid having the links snake
around, we’ll also set the GoPort.FromSpot for those parent nodes to be at the
middle of the bottom of the node.

Caution: using the PortSpot and ChildPortSpot properties is possible only for
ports on nodes with a single Port, such as GoBasicNode, GoIconicNode, and
GoBoxNode. If you are using a node such as GoTextNode or GoMultiTextNode,

 44

where there are many small ports positioned at particular places on each node,
you will need to programmatically relink to connect to the appropriate port.

layout.AlternateDefaults.LayerSpacing = 0

layout.AlternateDefaults.PortSpot = GoObject.MiddleBottom

If we had wanted to change where links connected to the child nodes, we could
change the value of ChildPortSpot.

You can even get them to overlap by using negative values for spacing.

layout.AlternateDefaults.LayerSpacing = -30

layout.AlternateDefaults.NodeSpacing = -10

layout.AlternateDefaults.NodeIndent = 15

Of course you will need to adjust the spacing and indentation sizes to match the
sizes of your nodes.

Note that the above examples set the PortSpot to a particular object spot, in this
case MiddleBottom. This causes the GoPort.FromSpot of the parent node to be
set to that particular value. The default value of GoObject.NoSpot would cause

 45

GoLayoutTree to assign a GoPort.FromSpot value that is appropriate for the
Angle.

You can also specify the ChildPortSpot property to cause GoLayoutTree to assign
the GoPort.ToSpot of the child nodes. The default value of NoSpot causes it to
assign an appropriate spot given the Angle to all of the children’s ports.

If your nodes have ports that already have port spots that you want to keep, set
SetsPortSpot and/or SetsChildPortSpot to false.

Automatic Layout inside SubGraphs

An automatic layout of a document only arranges the top-level nodes and links.
If you are using GoSubGraph nodes, you will notice that the interiors of
subgraphs do not get laid out at all.

If you want to perform an automatic layout of the children of a GoSubGraph,
you will need to create and initialize a GoLayoutNetwork explicitly, rather than
depending on the default behavior that uses the whole GoDocument. For
example, the following code performs an automatic layout of the GoSubGraph
that is the primary selection:

VB.NET:

 Dim sg As GoSubGraph = myView.Selection.Primary as GoSubGraph

 If Not sg Is Nothing Then

 Dim layout As GoLayoutLayeredDigraph = new GoLayoutLayeredDigraph()

 layout.Document = myView.Document

 layout.Network = layout.CreateNetwork()

 layout.Network.AddNodesAndLinksFromCollection(sg, true)

 ' maybe set other properties too . . .

 layout.PerformLayout()

 End If

C#:

 GoSubGraph sg = myView.Selection.Primary as GoSubGraph;

 if (sg != null) {

 GoLayoutLayeredDigraph layout = new GoLayoutLayeredDigraph();

 layout.Document = myView.Document;

 layout.Network = layout.CreateNetwork();

 layout.Network.AddNodesAndLinksFromCollection(sg, true);

 layout.PerformLayout();

 }

You can accomplish a thorough automatic layout of a document containing
subgraphs by iterating over the whole document and recursively descending
into each GoSubGraph. You will need to perform an automatic layout of each of
the children before doing the automatic layout of the graph, because the layout
of the children of a GoSubGraph will change the size of that node.

 46

C#:

 public void LayoutGraph(IGoCollection coll, GoDocument doc) {

 foreach (GoObject obj in coll) {

 GoSubGraph sg = obj as GoSubGraph;

 if (sg != null) {

 bool expanded = sg.IsExpanded;

 if (!expanded) sg.Expand();

 LayoutGraph(sg, doc);

 if (!expanded) sg.Collapse();

 }

 }

 GoLayoutLayeredDigraph layout = new GoLayoutLayeredDigraph();

 layout.Document = doc;

 layout.Network = layout.CreateNetwork();

 layout.Network.AddNodesAndLinksFromCollection(coll, true);

 layout.PerformLayout();

 }

Note how this code constructs new GoLayoutLayeredDigraphNetwork
instances for each subgraph, each initialized with the nodes and links in the
argument collection, until the final network encompasses all the top-level nodes
and links in the document.

This automatic layout of subgraphs depends on the links that describe the
subgraphs being children of the GoSubGraph nodes—they must not belong to
the document as top-level objects. If you find that all of the children of a
GoSubGraph are being laid out in a single straight line, then the problem is due
to how you constructed the GoSubGraph. Unlike the normal custom of adding
newly created instances of GoLink or GoLabeledLink to the document’s
LinksLayer, you should add links to the GoSubGraph that is the first parent that
both nodes have in common. The static/shared GoSubGraph.Reparent…
methods of may be useful in this regard.

 47

5. ADVANCED OPTIONS

This section provides details regarding customizing the GoLayout routines.
Referring to the GoLayout API Reference files will be helpful when reading this
section.

GoLayoutForceDirected

The MaxIterations property sets the maximum number of iterations that

the routine should use in looking for a local equilibrium. Be aware that
networks with large numbers of nodes and links require more processing during
each iteration, so raising the maximum number of iterations is not
recommended.

When a GoLayoutForceDirected is constructed, it uses a default of 1000. To
change the default, set the static/shared property
DefaultMaxIterations.

The following methods are available to customize the “forces” used by the
GoLayoutForceDirected class:

protected virtual float SpringStiffness(GoLayoutNetworkLink pLink);

protected virtual float SpringLength(GoLayoutNetworkLink pLink);

protected virtual float ElectricalCharge(GoLayoutNetworkNode pNode);

protected virtual float ElectricalFieldX(PointF xy);

protected virtual float ElectricalFieldY(PointF xy);

protected virtual float GravitationalMass(GoLayoutNetworkNode pNode);

protected virtual float GravitationalFieldX(PointF xy);

protected virtual float GravitationalFieldY(PointF xy);

protected virtual bool IsFixed(GoLayoutNetworkNode pGoNode);

Keeping in mind the description of the force-directed auto-layout routine given
in the GoLayout Concepts section of this guide, the nature of each of these
methods should be clear. By default, links have a stiffness of 0.05f and a length
of 50, nodes have an electrical charge of 150, a gravitational mass of 0, and are
not fixed, and every point in the document has both an electrical field and a
gravitational field of 0 in both directions.

 48

These methods can be used in a variety of ways to influence the final layout of
the nodes in the document. For example, the LayoutDemo sample application
overrides the ElectricalFieldX and ElectricalFieldY methods as follows:

VB.NET:

 Protected Overrides Function ElectricalFieldX(ByVal xy As PointF)

 As Single

 Dim border As Single = 50

 Dim min As Single = 0

 Dim max As Single = Document.Size.Width

 If xy.X <= 0 Then

 Return 300

 End If

 If xy.X < min + border Then

 Return (300 / ((min - xy.X) * (min - xy.X)))

 End If

 Return 0

 End Function

 Protected Overrides Function ElectricalFieldY(ByVal xy As PointF)

 As Single

 Dim border As Single = 50

 Dim min As Single = 0

 Dim max As Single = Document.Size.Height

 If xy.Y <= 300 Then

 Return 300

 End If

 If xy.Y < min + border Then

 Return (300 / ((min - xy.Y) * (min - xy.Y)))

 End If

 Return 0

 End Function

C#:

 protected override float ElectricalFieldX(PointF xy) {

 float border = 50;

 float min = 0;

 float max = Document.Size.Width;

 if (xy.X <= 0)

 return 300;

 if (xy.X < min + border) {

 return (300 / ((min - xy.X) * (min - xy.X)));

 }

 return 0;

 }

 protected override float ElectricalFieldY(PointF xy) {

 float border = 50;

 float min = 0;

 float max = Document.Size.Height;

 49

 if (xy.Y <= 300)

 return 300;

 if (xy.Y < min + border) {

 return (300 / ((min - xy.Y) * (min - xy.Y)));

 }

 return 0;

 }

This effectively places an “electrical” border around the document, which
prevents nodes from being forced off of the document. The Layout sample
application also overrides the other methods in order to use custom values for
different colored nodes and links.

By adjusting the values of the SpringLength and SpringStiffness, one can
achieve a number of sophisticated results. For example, by increasing the
SpringLength between red and green nodes, it is possible to group the nodes by
color as illustrated in Figure 18. Keep in mind that the colors of nodes are part
of the LayoutDemo application, and not a part of the GoLayout code itself.

Figure 18. Sample graph after adjusting spring length and
thickness

You can use the gravitational field values to influence the layout of tree-like
networks. For example, consider the following two networks:

 50

Figure 19. Sample graph before applying gravity field

Figure 20. Sample graph after applying gravity field

In both networks, the blue root node is fixed. In the network of Figure 19, no
gravitational field has been set. In the network of Figure 20, a slight
gravitational field pointing upward has been added, which results in a more
natural layout for a tree.

GoLayoutForceDirected has two other methods that can be overridden:
 protected virtual bool UpdatePositions();

 protected virtual void LayoutNodesAndLinks(bool isfinal);

The UpdatePositions method is used each iteration to calculate the forces on
each node and to move the node to its new position; it returns true if additional

 51

iterations are needed to find a local equilibrium. Overriding the
UpdatePositions method can be used to add entirely new forces to the layout.

The LayoutNodesAndLinks method is used to update the physical locations of
the “real” nodes on the screen to reflect the layout. By default, the
LayoutNodesAndLinks method redraws the screen every 10 iterations. One
reason to override this method would be to decrease the frequency of screen
redraws, which would decrease the time used to find a local equilibrium.

GoLayoutLayeredDigraph

Most of the customization available in the GoLayoutLayeredDigraph class is
accessed through its properties:

 public int LayerSpacing { get; set; }

 public int ColumnSpacing { get; set; }

 public GoLayoutDirection DirectionOption { get; set; }

 public GoLayoutLayeredDigraphCycleRemove CycleRemoveOption { get;

set; }

 public GoLayoutLayeredDigraphLayering LayeringOption { get; set; }

 public GoLayoutLayeredDigraphInitIndices InitializeOption { get; set;

}

 public int Iterations { get; set; }

 public GoLayoutLayeredDigraphAggressive AggressiveOption { get; set;

}

 public GoLayoutLayeredDigraphPack PackOption { get; set; }

See the GoLayout Class Reference Guide for a detailed description of these
properties. The LayerSpacing and ColumnSpacing properties determine the
minimum space (in logical units) between nodes in adjacent layers and columns.
Generally, since nodes have width and height, additional space is reserved
around nodes. However, ColumnSpacing will also determine the minimum
space between long links that are drawn parallel and adjacent to one another,
as illustrated in Figure 21.

 52

Figure 21. A graph showing the use of ColumnSpacing

The Iterations property determines the number of sweeps used during the
Crossing Reduction step. Experience has shown that values above 8 almost
never affect the final drawing of the network.

GoLayoutLayeredDigraph also has a number of methods that can be
overridden. These can generally be divided into three categories. The first
category of methods override principle steps of the layered-digraph routine:

 protected virtual void RemoveCycles();

 protected virtual void AssignLayers();

 protected virtual void MakeProper();

 protected virtual void InitializeIndices();

 protected virtual void InitializeColumns();

 protected virtual void ReduceCrossings();

 protected virtual void StraightenAndPack();

 protected virtual void LayoutNodesAndLinks();

These methods can be overridden to customize the layout algorithm, but care
should be taken to ensure proper initialization and termination of each method.
There is little reason to override most of these methods, since particular cycle
removal, layering, and initialization routines can be specified through the
constructor. However, one may wish to override the LayoutNodesAndLinks
method in order to take advantage of the added functionality of sub-classes of
IGoLink; for example, a sub-class that tracked bend points and allowed them to
be repositioned by the application.

One method that is more often overridden is AssignLayers. A common need is
to make sure that certain nodes are assigned to certain layers. For example, if
one wants to put all of the nodes that have no links coming into them at one

 53

side of the graph, one could override AssignLayers to first call the base method
to get the standard work done, and then one could reassign the layer of all of
those terminal nodes to be equal to the maximum layer.

The second category of methods override spacing methods:
 protected virtual int NodeMinLayerSpace(GoLayoutNetworkNode pNode);

 protected virtual int NodeMinColumnSpace(GoLayoutNetworkNode pNode);

These methods determine the minimum distance in document coordinates to
be reserved around the center point of a node. This allows a node to be
positioned by its layer and column, but ensures that two nodes do not overlap
in the final drawing. The default implementations of these functions return 0
for nodes that do not correspond to top-level Go objects. For nodes that do
correspond to top-level Go objects, the width and height of the object
determine the space. One may wish to override these methods if there are
nodes in the network whose spacing needs cannot be accurately determined
from the width and height of the Go object; for example, nodes which will later
have significant text fields associated with them.

The final category of methods override layering methods:
 protected virtual int LinkMinLength(GoLayoutNetworkLink pLink);

 protected virtual float LinkLengthWeight(GoLayoutNetworkLink pLink);

The LinkMinLength method indicates the minimum length of the link, measured

in layers. For example, if link L = (U,V), then Layer(U) – Layer(V) 
LinkMinLength(L). The default implementation gives multi-links (multiple links
between the same pairs of nodes) a minimum length of 2, and all other links a
minimum length of 1. This ensures that multi-links are drawn distinctly,
illustrated in Figure 22.

Figure 22. Example use of the LinkMinLength method

 54

The Layout Demo sample overrides the LinkMinLength method as follows:

VB.NET:

 Protected Overrides Function LinkMinLength(

 ByVal pLink As GoLayoutNetworkLink) As Integer

 Dim pFromNode As GoLayoutNetworkNode = pLink.FromNode

 Dim pToNode As GoLayoutNetworkNode = pLink.ToNode

 If Not pFromNode.GoObject Is Nothing AndAlso

 Not pToNode.GoObject Is Nothing Then

 Dim fromColor As Pen = CType(pFromNode.GoObject,

 BasicLayoutNode).Pen

 Dim toColor As Pen = CType(pToNode.GoObject, BasicLayoutNode).Pen

 If fromColor Is toColor Then

 Return 1 * MyBase.LinkMinLength(pLink)

 Else

 Return 2 * MyBase.LinkMinLength(pLink)

 End If

 End If

 Return MyBase.LinkMinLength(pLink)

 End Function

C#:

 protected override int LinkMinLength(GoLayoutNetworkLink pLink) {

 GoLayoutNetworkNode pFromNode = pLink.FromNode;

 GoLayoutNetworkNode pToNode = pLink.ToNode;

 if ((pFromNode.GoObject != null) && (pToNode.GoObject != null)) {

 Pen fromColor = ((BasicLayoutNode)(pFromNode.GoObject)).Pen;

 Pen toColor = ((BasicLayoutNode)(pToNode.GoObject)).Pen;

 if (fromColor == toColor) {

 return 1 * base.LinkMinLength(pLink);

 } else {

 return 2 * base.LinkMinLength(pLink);

 }

 }

 return base.LinkMinLength(pLink);

 }

This automatically doubles the length of the links between nodes of different
colors:

 55

Figure 23. Another example use of the LinkMinLength method

The LinkLengthWeight method indicates the weight of the link. The Optimal
Link Length Layering routine assigns nodes to layers such that the sum (Layer(U)
– Layer(V)) * LinkLengthWeight(L) over all L = (U,V) is minimized. By default, all
links have a LinkLengthWeight of 1. The LinkLengthWeight method can be
overridden to increase the “importance” of a link, which means the link will be
kept shorter. For example, compare the networks of Figure 24 and Figure 23.

Figure 24. Graph before using LinkLengthWeight

 56

Figure 25. Graph after using LinkLengthWeight

In both networks, the LinkLengthWeight of a link between nodes of the same
color is five times the LinkLengthWeight of a link between nodes of different
colors. Note that in the network on the right, the higher weight of the link
between the two green nodes resulted in a shorter link, at the expense of
lengthening two links of lesser weight.

Tree Layout

Most of the properties that govern how trees are laid out are properties of
GoLayoutTreeNode. Thus each node of the tree can have its own Angle,
Alignment, NodeSpacing, et al.

By default all GoLayoutTreeNodes get their properties initialized from either
GoLayoutTree.RootDefaults or GoLayoutTree.AlternateDefaults. (Note again
that for simplicity and ease of use, the “node” properties on GoLayoutTree
actually get and set the same-named properties on
GoLayoutTree.RootDefaults.)

AssignTreeNodeValues

But if you want to specify some properties for particular GoLayoutTreeNodes,
you cannot assign the properties of the whole GoLayoutTree. Instead you need
to override the AssignTreeNodeValues method. This method is called for each
GoLayoutTreeNode, so you can decide if it represents a GoNode that you care
about, and if so, what properties to assign to the argument GoLayoutTreeNode.

 protected override void AssignTreeNodeValues(GoLayoutTreeNode n) {

 57

 base.AssignTreeNodeValues(n);

 MyNode x = n.GoObject as MyNode;

 // a MaxGenerationCount of 1 means there are children but no

 // grandchildren

 if (x != null && x.ClosePack && n.MaxGenerationCount == 1) {

 n.NodeSpacing = 10;

 n.RowSpacing = 20;

 int cols = (int)Math.Ceiling(Math.Sqrt(n.ChildrenCount));

 // use n.Width if Angle is 90 or 270

 n.BreadthLimit = (n.Height+n.NodeSpacing)*cols;

 if (cols >= 3) n.Alignment = GoLayoutTreeAlignment.Start;

 }

 }

As this example shows, you can look at the GoLayoutTreeNode.GoObject to
decide whether to provide any custom property values.

Note also that you can make use of the statistical properties of
GoLayoutTreeNode, such as Level, DescendentCount, MaxGenerationCount,
and MaxChildrenCount in order to make decisions regarding how you want that
tree to lay out.

Sorting

Each GoLayoutTreeNode has the chance to specify the ordering of its children.
By default that order is just the order in which the Children are listed.

If you set the Sorting property to GoLayoutTreeSorting.Forwards, and if the
GoObject associated with each GoLayoutTreeNode is an IGoLabeledPart, the
GoLayoutTree.SortTreeNodeChildren method will sort the array of Children by
the IGoLabeledPart.Text strings with a case-insensitive comparison. Since
GoNode implements IGoLabeledPart, this will work to sort most nodes by the
text of their Labels.

However you can provide a custom IComparer for a GoLayoutTreeNode by
assigning an IComparer to the GoLayoutTree.Comparer property.

 [Serializable]

 public class FlagsComparer : System.Collections.IComparer {

 public FlagsComparer() { }

 public int Compare(Object x, Object y) {

 GoLayoutTreeNode m = (GoLayoutTreeNode)x;

 GoLayoutTreeNode n = (GoLayoutTreeNode)y;

 IGoGraphPart a = m.GoObject as IGoGraphPart;

 IGoGraphPart b = n.GoObject as IGoGraphPart;

 if (a != null) {

 if (b != null) {

 int aflags = a.UserFlags;

 58

 int bflags = b.UserFlags;

 return (aflags < bflags) ? -1 : ((aflags == bflags) ? 0 : 1);

 } else {

 return 1;

 }

 } else {

 if (b != null)

 return -1;

 else

 return 0;

 }

 }

 }

Then you could either use this comparer for many tree nodes:

 GoLayoutTree layout = new GoLayoutTree();

 layout.Comparer = new FlagsComparer();

 . . .

Or you could assign it for particular tree nodes in an override of
AssignTreeNodeValues. For example, to change how all of the parent nodes in
the third layer sort their children:

 protected override void AssignTreeNodeValues(GoLayoutTreeNode n) {

 base.AssignTreeNodeValues(n);

 if (n.Level == 2) {

 n.Sorting = GoLayoutTreeSorting.Reverse;

 n.Comparer = new FlagsComparer();

 }

 }

As another example, if you want to customize the LayerSpacing or NodeIndent
for “last parent” nodes based on the size of the node, you can do something
like:

 protected override void AssignTreeNodeValues(GoLayoutTreeNode n) {

 base.AssignTreeNodeValues(n);

 if (n.MaxGenerationCount == 1) {

 n.NodeIndent = n.Height+20;

 n.LayerSpacing = 20-n.Width/2;

 }

 }

Port Spots

To improve the tree layout of single-port nodes such as GoBasicNode and
GoIconicNode, the GoLayoutTree.SetPortSpots method sets the values of

 59

GoPort.FromSpot and GoPort.ToSpot to force links to come out or go into the
ports in certain directions at certain locations, according to the
GoLayoutTree.Angle.

So for a tree whose Angle is zero and whose Path is the default
GoLayoutTreePath.Destination, the GoPort.FromSpot should normally be
GoObject.MiddleRight, and the GoPort.ToSpot should normally be
GoObject.MiddleLeft. This is usually the best to reduce the likelihood of links
crossing over adjacent nodes.

However, you can easily either avoid setting any port spots or set them to node-
specific values. Set SetsPortSpot to false to avoid setting the port spot for the
parent node; set SetsChildPortSpot to false to avoid setting the port spot for
the children. To specify a particular spot, set the PortSpot and/or ChildPortSpot
properties, respectively. (As with all tree node properties, you can set this
either in the GoLayoutTree.RootDefaults or GoLayoutTree.AlternateDefaults
to cover all of the nodes, or you can set this for particular GoLayoutTreeNodes
in an override of GoLayoutTree.AssignTreeNodeValues.)

Remember that the PortSpot and ChildPortSpot properties are only effective if
the port can support links coming in or going out at the desired spots. The ports
on GoBasicNode, GoIconicNode, and GoBoxNode do support links coming in or
going out at any direction. For most nodes with multiple ports, the ports are
designed to go at specific directions, so setting the port spots would not make
sense. Thus the SetPortSpots method sets port spots only for those ports that
are the only GoPort for its node.

Threads

GoLayout does not explicitly make use of any threads. All of the computation is
performed on the thread which calls PerformLayout. That means that if your
Windows Forms application has a button or menu item command that
constructs a GoLayout and then calls PerformLayout, the application user
interface is blocked until the PerformLayout call returns.

You can easily put the layout computation in a worker thread. This allows your
application to remain responsive, and lets you be able to implement commands
that abort the layout computation. You just need to set GoLayout.View to your
GoView so that Progress events and positioning of document objects can be
done on that view’s thread.

C#:

 // the event handler to start a layout

 private void button1_Click(object sender, System.EventArgs e) {

 if (myThread == null) {

 myThread = new Thread(new ThreadStart(this.LayoutAsynch));

 60

 myThread.Start();

 }

 }

 private Thread myThread = null; // the thread running PerformLayout

 private void LayoutAsynch() {

 GoLayoutForceDirected layout = new GoLayoutForceDirected();

 layout.Progress += new GoLayoutProgressEventHandler(layout_Progress);

 layout.Document = goView1.Document;

 layout.View = goView1; // the Control to Invoke when InvokeRequired

 layout.PerformLayout();

 myThread = null;

 }

 void layout_Progress(object sender, GoLayoutProgressEventArgs e) {

 // substitute your own informational mechanisms...

 SetStatusMessage(((int)(e.Progress*100)).ToString() + "% done");

 }

 // an event handler to cancel the layout
 private void goView1_KeyDown(object sender, KeyEventArgs evt) {

 if (evt.KeyCode == Keys.Escape) {

 if (myThread != null) { // don’t have multiple layouts running

 myThread.Abort();

 myThread = null;

 SetStatusMessage("layout aborted");

 }

 }

 }

