
GoDiagram Win Introduction
Copyright © 2002-2019 Northwoods Software Corporation

GoDiagramTM Win for Microsoft® .NET Windows Forms (“Go”) is a .NET class library containing a set of
Windows Forms controls for easily building interactive diagrams in .NET-based applications.

The User Guide provides details about Go. You will need to read this before you can really make good use of
Go.

Installation kits

GoDiagram Win 6.0 is provided only in ZIP format. It includes with DLLs for .NET 3.5, 4.0, 4.5, 4.6, 4.7.1,

and 4.8.2 and .NET Core 3.0 as well as compiled examples and the license manager.

For an MSI installation, use GoDiagram 5.2 kits.

Kits serve as both an evaluation kit as well as the full binary product kit both for GoDiagram. When you have
purchased and installed a full binary development license, you will be able to compile and distribute
applications using that assembly without getting evaluation watermarks.

Before you install Go, you should already have installed the version of the .NET Framework SDK that the kit
depends upon.

GoDiagram Win Files

GoDiagram Win consists of seven assemblies:

• Northwoods.Go.dll, holding the Northwoods.Go namespace

• Northwoods.Go.Layout.dll, holding the Northwoods.Go.Layout namespace

• Northwoods.Go.Instruments.dll, holding the Northwoods.Go.Instruments namespace

• Northwoods.Go.Xml.dll, holding the Northwoods.Go.Xml namespace

• Northwoods.Go.Svg.dll, holding the Northwoods.Go.Svg namespace

• Northwoods.Go.Draw.dll, holding the Northwoods.Go.Draw namespace

• Northwoods.Go.Pdf.dll, holding the Northwoods.Go.Pdf namespace

The assemblies are in the libx.y subdirectories of the Go installation. They only depend on the Microsoft
.NET System, Windows Forms, and Drawing assemblies. They do not include any unmanaged code and do
not require any particular permission beyond what any Windows Forms application would need.

.NET Core 3.0 assemblies are in the netcoreapp3.0 folder.

Detailed documentation on the types in these libraries is provided in the compiled HTML help file. This file,
along with other documentation, is in the docs subdirectory of the Go installation.

It also places some example code in the Samples subdirectories. Both sample executable applications and
the sample application source code are included. You can rebuild the sample applications by opening the
project files in Visual Studio and compile and debug them individually. Or you can open the Samples3.sln or

for VS2008 (or Samples4.sln or SamplesVB4.sln for VS2010 and “45” for VS2012/2013, “46” for VS 2015, and
“47” for VS 2017) to see all the samples in one place.

Samples for Visual Basic have been removed from the 6.0 kit. Install an older 5.3 kit for those samples.

Initial Experiences

If you haven’t already run the sample applications, just to get a feel for what GoDiagram can do, please try
them. Reading the source code for the applications will really help you understand how easily you can
implement different kinds of features. Remember that these are sample applications. Sometimes
functionality is implemented just for the sake of demonstration—no real application would want to have
that combination of features, or so many different ways to achieve the same kind of functionality.

If you have certain features you know you want to implement, but are not sure how to do so, it might help
to read the Frequently Asked Questions (FAQ) document, GoDiagramFAQ.htm, in the docs
subdirectory. Another source of inspiration can be the GoDiagram forum at http://forum.nwoods.com/.

It might also help to read the entire User Guide, GoUserGuide.doc, because it discusses much of the

programming model embodied in Go. If you don’t have that much time, at least read the Go Concepts
chapter in the User Guide.

Customizing Visual Studio

If you are using Visual Studio, you’ll want to customize your Toolbox to include the three controls provided
by the Northwoods.Go.dll assembly.

1. Start up Visual Studio
2. View the Toolbox, if it isn’t already visible.
3. Open up the tab that you want to hold the Go controls. You may want to create a new tab, or you

may want to use an existing tab of Windows Forms controls.
4. Context click (right-mouse click) in the desired toolbox tab window. Choose the “Add/Remove

Items” or “Choose Items…” context menu command. The Toolbox customization dialog will appear.
5. Select the “.NET Framework Components” tab.
6. Scroll down until you find the GoView, GoPalette, and GoOverview controls, in the Go assembly. If

you do not see these controls, you may need to click the “Browse…” button to open the assembly in
the lib subdirectory of the Go installation. Make sure all three controls have check marks by them.

7. Click OK for this dialog. The three controls should appear in your toolbox.
You can now drag any of the controls onto your Form that you are designing. The Properties window will let
you specify many of the properties and events to customize the appearance and behavior of the selected
view.

Creating a Standard MDI Windows Forms Application

It is very easy to use Visual Studio and its Form Designer to create a new single document interface
application that uses Go. However, when you want to create a “standard” multiple document interface
application, there are a lot of details that you must implement.

We have already done much of the work for you, in the form of the ProtoApp sample application. The
ProtoApp sample is a complete, runnable application, but you’ll want to customize it.
You can use this project to get started on your own application.

http://forum.nwoods.com/
http://forum.nwoods.com/

1. Depending on whether you want to code in VB.NET or C#, copy the appropriate directory,
Samples\ProtoApp or SamplesVB\ProtoApp to your own directory.

2. Replace “ProtoApp” with your own project name in all of the files, and then edit the code to suit
your needs.

3. Search for “TODO” to find some of the places you’ll want to customize.

You might consider starting off with some of the other sample applications, if they are closer to what you
are looking for. The organization chart, state diagram, and flow chart editing programs are popular starting
points. The class hierarchy browser is also representative of part of many Go applications, and is useful for
learning Go in its own right.

Permissions

The Northwoods.Go.dll assembly requires at least the following permission:
UIPermissionWindow.SafeSubWindows

Depending on the functionality you use, it may also need the following permissions:
UIPermissionWindow.AllWindows
UIPermissionClipboard.AllClipboard
PrintingPermissionLevel.AllPrinting
FileIOPermissionAccess.Read, for image files your application uses, if any

The Northwoods.Go.dll assembly does not on its own need to call unmanaged code, perform

serialization (except through the clipboard), manipulate threads, or use reflection. Files are only read when
you specify file names for GoImages. No network I/O occurs except when GoImage loads an image from the
URI given by GoImage.Name when GoImage.NameIsUri is true.

Special Deployments

Once you have a binary development license for GoDiagram, you will also be able to produce:

• No-touch or one-click deployment applications that run with reduced trust levels

• Web pages with embedded DLLs that use GoDiagram

Contact us for a replacement DLLs that will work in a reduced-trust environment.

But note that features will fail or not be available in reduced-trust environments. For example, the user will
not be able to read or write local files in a medium-trust environment, and the user will not be able to drag-
and-drop between windows or do in-place text editing in a low-trust environment.

This is a list of known restrictions that have been found to affect using GoDiagram Win, and how the
restrictions are handled:

• Trying to set Control.AllowDrop to true when constructing a GoView, GoPalette, or GoOverview
may signal a SecurityException. This is handled silently by those constructors (except for a Trace
message) and they set GoView.AllowDragOut to false. Users will not be able to do drag-and-drop;
dragging between windows is disabled, and dragging within a GoView is handled by tracking mouse
up/move/down events.

• Calling Control.DoDragDrop; DoDragDrop should not be called from GoToolDragging.Start when
GoView.AllowDragOut is false, but if it is called anyway because AllowDragOut was set to true, the
SecurityException is handled silently (except there is a Trace message) and the effect is to only do
the internal “dragging”, as described above.

• GoView.CopyToClipboard and GoView.PasteFromClipboard might not work. There is no message
or exception.

• GoView.Print might not work.

• Creating Controls for in-place editing may signal a SecurityException in GoText.DoBeginEdit; this is
handled silently (except there is a Trace message) as if cancelling the edit. Users might not be able
to do in-place text editing.

• GoView.DrawXorLine and GoView.DrawXorRectangle may signal an uncaught SecurityException.
GoView.DrawXorBox will handle the SecurityException by drawing a gray rectangle instead.

• Control.Focus may cause a SecurityException; internally any call to Focus will handle any
SecurityException silently, again with a Trace message.

• There is no definition of GoView.ProcessCmdKey, which in the standard DLL will allow characters
that would be treated as menu accelerators be passed on to any in-place editor control that has
focus.

• There is no definition of GoView.IsInputKey, which in the standard DLL will handle the arrow keys to
allow scrolling or moving of the selection, depending on the value of GoView.DisableKeys.

Of course there are many other restrictions not involving Go, such as the inability to create MDI child
windows.

In any case, you are likely to run into SecurityExceptions as you try to run your application in an
environment with restricted permissions. You should first test that your application runs correctly when
manually copied to a non-development machine, running with full-trust. Then when running your app as
“http://localhost/…” or “http://127.0.0.1/…”, we suggest you use exception handlers that display the stack,
to give you a better idea of what is failing and when. (Patience is also a virtue.)

To repeat: you should do your deployment testing on a machine where GoDiagram Win is not installed.
That is just wise testing policy.

